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spherical obstacles~” and infinitely thin symmetrical back-scattering measurements can yield accurate re-

obstaclesg all approach twice the value obtained by geo- sults for three-dimensional obstacles of very small scat-

metrical optics. It is found, however, that the back- tering cross section and arbitrary shape provided that a

scattering cross sections of circular cylinders are 7r/2 judicial choice and design of each component part of the

times the geometrical area, those of spheresll unity times system is made. Thus it supplements the frequency

the geometrical area, and those of thin circular disks separation method used by Tang3 for two-dimensional

square of the geometrical area, obstacles.
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On Network Representations of Certain

Obstacles in Waveguide Regions*

H. M, ALTSCHULER~ AND L. O. GOLDSTONEf

Summary—Network representations for a class of obstacles in
waveguide regions when the diffraction problem is of a vector type

can be obtained by the use of E- and H-type modes. The special
properties of these modes are dkcussed and highlighted by an exam-
ple involving the network representation of a periodic strip grating in

free space for oblique incidence. Transformations relating the dif-
ferent networks based on various modal representations in rec-

tangular coordkate systems are also dkcussed.

I. INTRODUCTION

T

HE problems of the diffraction of electromagnetic

waves by obstacles in waveguide or free space are,

in general, vector problems. However, in the case

of “two-dimensional” obstacles such as the perfectly

conducting half plane, infinite periodic gratings, or the

infinite circular cylinder in free space, the vector diffrac-

tion problem may be decomposed into two independent

scalar problems. The same is true in the case of certain

structurally similar obstacles in rectangular and parallel

pIate waveguide. Such decompositions have been em-

ployed, for example, by Heinsl in treating the diffrac-

tion of a dipole by a perfectly conducting half plane,

and by Levy and Keller2 in their discussion of diffrac-
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manuscript received, November 4, 1958. The research reported was
conducted under Contract AF- 19(604)2031, sponsored by the A.F.
Cambridge Res. Center, Alr Res. and Dev. Command.
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plane by a dipole field, ” IRE TRANS. ON ANTENNAS ANCI PROPAGA-

TION, VO1. AP-4, pp. 294–296; July, 1956.
~ B. R. Levy and J. S. Keller, “Diffraction by a Smooth Object, ”

Inst. Math. Sci,, New York Univ., N. Y., Res. Rep. EM-109; Decem-
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tion by finitely conducting cylinders at oblique inci-

dence.

In this paper it is shown that modal techniques lead-

ing directly to network representations ]may be em-

ployed systematically in the solution of such problems.

When the attempt is made to base this approach on the

familiar E and H modes propagating perpendicular to

the symmetry axis, the desired separation into scalar

problems is not possible. On the other hand[, the separa-

tion into the simpler scalar problems can be effected by

appealing to an expansion of the fields in terms of an ap-

propriate alternative set of orthonormal modes. These

modes also make it possible to obtain the network repre-

sentations of problems involving arbitrary angles of in-

cidence directly from the results of the com-esponding,

strictly two dimensional (incident vector perpendicular

to obstacle axis) problems. The matrix rela ticms derived

here, which relate the networks based on these modes

to networks based on standard E and H modes, further

increase the area of applicability of the network solu-

tions.

The modes employed here, which form a complete

orthonormal set of vector modes, are designated as the

E- and EZ-type modes. They differ from the familiar

H and E modes in that they are characterized by the

vanishing of a t~ansve~se, rather than a longitudinal,

field component. To effect the separation into two

scalar problems, the modes are chosen such that cme

sub-set (E-type) has no component of the magnetic field

parallel to the axial direction of the “two-dimensional”

obstacle, while the second sub-set (H-type) has no COm-
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ponent of electric field in this direction. In the strictly

two-dimensional case, the E- and H-type modes are

identical with the H and E modes, respectively.

While the emphasis in this paper is primarily directed

towards the application of E- and H-type modes to a

technique whereby the network representations for a

class of obstacles under general incidence conditions can

be obtained, it is necessary to consider the modes them-

selves in some detail. Modes classified on the basis of

vanishing transverse field components have been dis-

cussed and employed previously by a number of au-

thors.3–9

In Section II the eigenvalue problem for E- and

H-type modes in both rectangular and circular cylindri-

cal coordinates is discussed. The connection between

the strictly two-dimensional diffraction problem and the

general case involving arbitrary angle of incidence is

obtained in Section III. Section IV contains an illustra-

tion in which the E- and H-type modes are employed to

obtain a network representation of a periodic, perfectly

conducting strip grating for arbitrary angle of incidence

and arbitrary polarization of the incident wave. The

linear transformation connecting the various modal

representations in rectangular and parallel plate wave-

guides is treated in Section V. Finally, the -E- and

H-type mode functions in rectangular coordinates ap-

propriate to free space and to periodic structures in free

space are presented in an Appendix.

II. MODAL REPRESENTATIONS

The total electromagnetic fields in an open or closed

waveguide region which possesses an axial direction,l”

here arbitrarily designated as they direction, can always

be represented in terms of two uncoupled scalar func-

tions, each of which satisfies the wave equational when

the region is bounded, if at all, by perfect electric or

magnetic walls. These scalar functions are essentially

the y components of the electric and magnetic fields, E,

‘ N. Marcuvitz, “Waveguide Handbook, ” Rad. Lab. Ser., vol. 10,
McGraw-Hill Book Co., Inc., New York, N. Y., pp. 89–96; 1951.

4 J. Van Bladel, “Field expandability in normal modes for a multi-
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253, pp. 313-321; April, 1952.
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AND TECHNIQUES) vol. MTT-5, pp. 68–74; January, 1957.
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cal 11’aveguide Regions, ” Microwave Res. Inst., Polytech. Inst. of
Brooklyn, N. Y., Rep. No. R-565-57; March, 1957.

7 R. E. Collin and R. M. Vaillancourt, “Application of Raleigh-
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July, 1957.
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R-629-57; August, 1957, and January, 1958.
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11J. A. Stratton, ‘i Electromagnetic Theory, ” McGraw-Hill Book

Co., Inc., New York, N. Y., pp. 350-351; 1941.

and HU. It is, therefore, suggestive to classify modes on

a similar basis (i. e., a sub-set for which EU = O, and one

for which HU = 0) so that uncoupling of the two modal

sub-sets will always result. It must be noted, however,

that the above classifications are not sufficient to com-

pletely define the mode sets but that a “transmission

line direction, “ i.e., the direction in which the modes are

taken to propagate, must also be chosen. It must be

noted that the transmission line direction does not

necessarily coincide with the axial direction defined

above. 1f the transmission line direction is chosen to

coincide with y, then the familiar E and H modes re-

sult. 12 If one of the other coordinates is chosen as the

transmission line direction, then the resulting modes are

E-type (HU = O) and H-type (EU = O) modes. These

modes constitute a complete set of vector modes pos-

sessing orthogonality properties on surfaces transverse

to the transmission line direction.

In the following section, the eigenvalue problems for

E- and H-type modes are formulated for waveguide

cross sections for which rectangular or polar coordinates

are appropriate. The general solutions of these eigen-

value problems are then obtained. Certain explicit mode

functions in free space are listed in the Appendix. Mode

functions appropriate to parallel plate waveguide, to the

conducting wedge, and to periodic structures in free

space rotated with respect to the x, y coordinates are

available elsewhere.13

1. The Eigenvulue Problem in Rectangular Coordinates

Waveguide regions where rectangular coordinates are

appropriate are highly degenerate in that three axial

directions exist. I-Iere the z direction is arbitrarily

chosen as the transmission line direction. The time de-

pendence is taken as exp jd.

The vectors transverse (to z) field equations for any

uniform waveguide, in the absence of sources, are :lZ

ZE’= -’”(lt+%)”HtxzOd

;H, = –jot
(“+%)”zOxEt “)

where, for rectangular coordinates,

It is the transverse unit dyadic xOxO+yOyO,

V, is the transverse gradient operator xor3/dx

+Yoa/dy,

Xo, y. and Z. are unit vectors,

and k is the free space wave number 27r/h.

The desired modal representation of the transverse fields

is

lZ .N, Marcuvitz, op. d., Sec. 1.2.
13 H, ivl. Altschuler and L. O. Gold stone, ‘(A class of Alternative

Modal Representations for Uniform Waveguide Regions, ” Micro-
wave Res. Inst., Polytech, Inst. of Brooklyn; Rep. No. R-557-57
February, 1957.
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E,(*, y, z) = ~ Vi(z) et(x, y),

Ht($ y, z) = ~ It(z) hi(x, y). (2)

Upon substitution of (2) into (1), the transmission line

equations and the vector eigenvalue problem for the

transverse mode functions [(3) and (4) below ] follow

readily with the products, KiZ, and K; Yi, playing the

role of separation constants. Vi(z) and Ii(z) are hence

identified as the modal voltages and currents:

dV< dI;
— jKiZ,Ii, – jK% YiV,, (.3)

dz = dz =

where K, is the modal wave number for propagation

along z, and Z, = 1/ Y; is the modal characteristic im-

pedance. The actual value of Z~ must be chosen ap-

propriately in connection with each particular case. The

vector eigenvalue problem for the transverse mode func-

tions is

‘izie’=+t+%?”hixzo
“y’h= ‘e(l’++)”zOxei

Eq. (4) may be combined to yield the second

problems for e~ and hi,

(V,2 + k,$’)e~ = O, (V,2 + k,i’)hi = O,

where

kti2 = k2 – Ki2 = k.i2 + kg;’.

(4)

order

(5)

In rectangular coordinates, the preceding equations do

not uniquely specify a modal set since the eigenvalue

problem posed by (4) is degenerate, in the sense that

corresponding to each pair of transverse wave numbers

kz,, kg, there are two independent mode functions. These

two mode functions may be chosen to be orthogonal to

each other in a variety of ways. Each such choice will

result in a particular mode set. Two of these sets are of

interest here. One is obtained if the familiar condition

e,= hi X Z. is imposed. It is comprised of two sub-sets of

modes, both associated with the same eigenvalues,

namely, the usual E and H modes. These are character-

ized by vanishing field components in the transmission

line direction; in detail, the E modes by HZ= O, and the

H modes by E.= O. If, on the other hand, the condition

e~j = O is imposed, a sub-set of H-type modes results

with transverse wave numbers k~i and k~,. The associated

modal sub-set (E-type modes) which corresponds to the

same transverse wave numbers results upon the imposi-

tion of the condition lz~, = O. These two modal sub-sets

again constitute a complete orthogonal set; the trans-

mission line direction is along z, but the modes are now

characterized by vanishing field components along y.

Solutions for the components of the 1?- and H-type

mode functions can be obtained from (5) ; in particular,

it is convenient to fix upon the y components:

(2 )~+~-l-kti’z eVi’=O, k,l’ = k2 - K~2 (6a)

for the E-type modes, where hv~ = O, and

(2; +$ + k,,”2
)

h.;’ = o, kt,”z = k’ -- K,’” (6b)

for the H-type modes, where CU,” = O. In order to insure

the proper relationship between the components of

these transverse vector mode functions, one rewrites the

components of (4) in the following forms:

For the E-type modes (hU,’ = O),

Z,’ may be defined as

(8)

(9)

For the H-type modes (eU;” = O),

Y;’ may be defined as

(11)

so that

ezi” = lzui”. (12)

It can be seen from (7) and (10) that these mode func-

tions do not exist when k2 = ku,z. In such cases an al-

ternative modal description must be employed.

As can be demonstrated, the E-type and H-type mode

functions possess the following orthogonality prop-

erties:

w I’2Sshi” X zo e, fl”dxdy = O, a # ~ and/or i #j, (13)
U1 q

where X1, xT, yl, and yz are the appropriate limits of in-

tegration, and where both a and ~ can stand for the

prime or the double prime indices; the asterisk stands

for complex conjugate. The definition of .2$’ in (8) and

Y,” in (11) assures that the mode function:$ are nor-

malized so that
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for boundedll regions. It is stressed again that for

these modes e,” #h,” X ZO, in contrast to the usual E

and H mode case where e;”= h,” Xzo. In view of this,

there is an additional arbitrariness here which has been

exploited by defining characteristic impedances as in

(8) and (11). The following two scalar orthogonality

conditions may be written as a consequence of (14),

(9), and (12) :

U2 L2

Ss
evlr eg~‘*dxdy ~ 6 jj ,

VI 251

Uz

H

X2

lZu,’’ku;’* d.cdy = 6,,. (15)
V1 Z1

It is, therefore, apparent that the above choices of char-

acteristic impedance [see (8) and (11) ] correspond to a

normalization demand on the scalar components of the

mode functions eg~ and kU,” as well.

For the case h,= O, i.e., when there is no field varia-

tion in the y direction, (7)–(12) take on much simpler

form. The equations in this form are recognized to be

appropriate to the familiar H and E modes; the scalar

field components involved satisfy the relation e,” = h,”

X ZO. Eq. (13) now reduces to the usual normalization

statement for H and E modes:

f

X2

eio ~ej@dx = 8&B. (16)

xl

It is seen, then, that when the fields have no variation

in the y direction, the E- and H-type mode functions are

identically the familiar H and E mode functions (in z),

respective y.

The explicit form of the E- and H-type mode func-

tions, of course, depends on the boundary conditions.

The actual mode functions for some special cases are

presented in the Appendix.

2. The Eigenvalue Problem for Radial T~ansmission Line

Modes

The circular cylinder coordinate system appropriate

to the following discussion is shown in Fig. 1. The time

dependence is again taken as exp jut;the radial direc-

tion is the transmission line direction. The description

employed here is called a radial transmission line de-

scriptionl~ which, it will be shown, is based on a set of

E- and H-type modes possessing vector orthogonality

properties.

The transverse (to ~) field equations in this case are

those given in the “Waveguide Handbook. “lb The de-

sired modal representation of the transverse fields is

yE@ = ~ V;(v) e@;(y, @], ~H@ = ~ ~~(?’)k~;(y, @), (17)
z %

l! This and all ~UbS~~Uent orthogonality or nOrlnaliZatiOn 5tate-

ments hold for unbounded regions if 3,j is replaced by ~(i–j).
M N. &larcuvitz, op. cd., sec. 1.~.

April

Fig. l—Circular cylindrical coordinates,

where, upon substituting (17) into the field equations

and applying a separation of variables argument, the

modal voltages and currents can be shown to satisfy the

radial transmission line equations:

From the field equations, the following two scalar

eigenvalue problems are obtained:

for E-type modes: hUi’ = O, (19)

for H-type modes: ev~’ = O. (20)

Here k.,’, p,’, k.,”, and p,” are separation constants. The

remaining components of the mode functions are ob-

tained from the field equations and (17) and (18) :

In exact analogy with the preceding rectangular

the following choices are now made:

Eqs. (2 la) and (22a) then reduce to

case,

(23)

(24)

As before the choices embodied in (2.3) are equivalent to

the following normalization demand:
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Y2

H

@z

eui’ evj ‘*d@dy = di,;
L/l ml

U2 $iqSsi%ul’lzU{’*d@dy = &j. (2.s)

VI %

In terms of the scalar functions, with ro, @o, and yo taken

as unit vectors, one defines the vector mode functions

as

ei = @Oeoi + yOeUt and hi= @Ok@i + yokv,. (26)

Now (23) is equivalent to the following normalization

demand on the vector mode functions:

Y2 *2

Sf
hla X r. ~e,~+d+dy = ~,,~efl. (27)

?/1 al

Eq. (23) expresses 2/ and Y:’ in terms of ~i’ and K,”,

which, it can be shown, are given by

[K,(~)]2 = (k’ - kv,2) - ~ . (28)
r~

These modes exist only when k’ #kV~:. The explicit form

of the mode functions in specific cases, of course, de-

pends on boundary conditions.

II 1. APPLICATION TO TWO-DIMENSIONAL SCATTERING

PROBLEMS—ARBITRARY ANGLES OF INCIDENCE

As has already been pointed out, the total fields in

homogeneous waveguide regions uniform in the y direc-

tion can be expressed in terms of the scalar field compo-

nents, EU and HU. These components satisfy the scalar

wave equation

[vtz + (kz – k,z)]~= 0, (29)

where the operator Vtz is taken as V2 — (dz/s3y2) and the

operator i12/i3yz as — kg 2. It is apparent that the f wzc-

timzalfom of the solutions of (30) is independent of the

value of ky and that solutions for kv # O are readily in-

ferred from those for ku = O. If the solution:; for kU = O

are Eu = _EU(k) and HU = HU(k), then those for kU #O are

obtained by replacing k by 4V — kU2 wherever it occurs.

This property can be usefully applied, when the field

solution of a two-dimensional problem (kU = O) is known,

to obtain a solution for the corresponding problem with

kU#O.

It will now be shown that the (E- and H-type) net-

work parameters appropriate to certain two dimensional

problems can be similarly modified to yield the network

parameters for the case kU # O. This procedure is applica-

ble when the E- and H-type modes are uncoupled both

for hU=O and bti#O.

Since the y components of the E-type mode functions,

e~,’, are independent of both k and kU, the dependence of

E. on ~kz – kY2 is associated only with the mode volt-

ages, i.e.,

EV(<k2 – kg2) = ~ V/(<kz – kU2)eu,’. (30)

The elements of the normalized scattering matrix for a

discontinuity which is uniform in y, but otherwise ar-

bitrary, are defined as:

V’,efi
— = s;,, (i,j= 1,2,3c0 N),
V’i~oj

(31)

where

V,’(<k’ –

—

From (31)

kv2)

V’,.. ,(<k’ – k,’) + V’,., ,(<k’ – k.’). (32)

and (32) itmay be concluded that

S,, = S,,(<k2 – kv2).

the dependence of the scattering coefficientsIn view of

on tikz — kvi, it is seen that the scattering matrix for the

case kV#O can be obtained from that for the case k~ = O

by replacing k by ~kz–k,’.

When the corresponding impedance matrix Z is nor-

malized, it can be expressed in terms of the scattering

matrix. The normalization of the impedance matrix can

be accomplished in a variety of ways. The relationship

between the scattering matrix and the normalized im-

pedance matrix Z’ is

G–
z’ = %’.(l + S)(l – 70ZS)–1% (33)

where the impedance matrix has been normalized in the

following manner:

--+ *
Each element of the diagonal matrices YO and YO is the

admittance seen by a mode traveling on an infinite

transmission line.l” The arrows indicate the two direc-

tions of travel. Upon examination of (33) one finds that

Z’, like S, depends only on VW – k2V. This follows from

the fact that the dependence on k (other than that on
+ +

<k2 – k2U) of the admittance matrices YO and Y. is the

same, and that this dependence can be factored out as a

constant multiplier F(k) :

?, = F(k):(<k2 – k,z) .

Therefore, for the normalized impedance matrix Z’, as

for the scattering matrix S, the results for k. # O can be

obtained from those for ku = O by replacing k by

<k’– k;. Although Z’ is normalized in a symmetric

manner here (Z,j’ = Zj,’), the conclusion has been shown

to hold for any type of normalization. A similar pro-

cedure results in the same conclusions for the scattering

and normalized impedance matrices associated with

H-type modes.

It is important to recall at this point that the earlier

conclusion that E- and H-type modes with ku = O are re-

spectively identical to the conventional H and E modes.

--+ +--
M For radial ancf other nonuniform transmission lines Yo and l-o

are not the characteristic admittances of the transmission lines, .%n
infinite radial line ex&n&from r = O to r = co. In the case of uniform

transmission lines, YO= YO= characteristic admittance.
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One can consequently take advantage of the known

equivalent circuits associated with two dimensional

(k, = O) E or H mode problems in order to find the net-

works associated with E- and H-type modes when

ku#O. A specific illustration is embodied in the following

section.

IV. ILLUSTIMTION OF APPLICATION OF E- AND

H-rrYPE NIODES: DIFFRACTION BY

AN INFINITE STRIP GRATING

The properties of the E- and H-type modes make

them particularly convenient for application to a cer-

tain class of diffraction problems associated with uni-

form homogeneous open and closed waveguide regions

which may be of unconventional cross section. In more

detail, their virtue lies in the fact that these problems

involve uncoupled E- and H-type modal sets which can

immediately be solved as scalar problems. The solu-

tions of such diffraction problems can be phrased in

either field or network terms. They may be exploited to

obtain the improper modes of open structures (for

given k.), or the propagation wave numbers kU, for leaky

and closed waveguides, via a transverse resonance pro-

cedure.

Let a plane wave

E = Ae–jk.r, .4 = xnaz + yoau + zoaz

be incident at an arbitrary angle upon the doubly in-

finite strip grating shown in Fig. 2 which is uniform in

the y direction. When z is taken as the transmission line

direction, the transverse electric field with suppressed y

dependence is expressed by the superposition of the two

lowest (m= O) E-type and H-type mode functions (see

Appendix) appropriate to such a periodic structure:

Ate–J(hOZ+W) = ~o’in,(z)eo’(x) + ~o”in.(Z)f?o’’(X),

where it can be shown that, in terms of the incident

wave amplitudes,

VO’inc(Z) = <Z aue–~”oz,

One can therefore regard the problem as two uncoupled

scalar problems. For k.= O, these are identically the

scalar H mode and E mode problems for which network

solutions are known17 for the E-type mode (i.e., the

scalar field eti) and the H-type mode (i. e., the scalar field

lzu) incident, the equivalent circuits are shown in Figs.

3(a) and 3(b), respectively. The representations are at

the plane T (taken as z = O) in which the strips are lo-

cated. These solutions are subject to the restriction

a(l — kmO/k) /X <1, so that only the lowest E-type mode

and H-type mode propagate. The propagation wave

number of the associated transmission lines is KO; im-

pedances have been normalized to the respective char-

17~~a~cuvitz, op. cit., sees. 5.18 and 5.19.

Ill
Y

PLAN
x VIEW

T-—, - + x EDGE
VIEW

April

L–a–d z

Fig. 2—Doubly infinite strip grating and associated coordinates.

–% O----kz
T T T

(a) (b)

Fig. 3–-Equi\alent circuits appropriate to the two uncoupled
scalar problems when there is no variation in y.

Fig. 4—Equivalent circuit appropriate to the strip grating
when there is variation in y.

acteristic impedances. Explicit expressions for the pa-

rameters Be’(k) and X~’(k) are available17 in the form

B.’(k) = B.(a, d, k, cos 0)/Y~; Yo’ = Ko/(A7P,

X~’(k) = X~(a, d, A, cos 0)/ YO”; Vo” = &/f@,

where cos O = tiO/k, and, of course, k = 27r/k. The corre-

sponding parameters with kU # O are B.’( ~k~ — kv~) and

XL’ ( ~E’ – kU2). The network solutions with the original

plane wave incident then is given by the uncoupled net-

work of Fig. 4, together with the specified incident volt-

ages Vo’ino(z) and J’O’’inC(z) at z= O. The voltage reflec-

tion coefficients (with the ~kz – kU2 dependence under-

stood) at T_ are

r’ = – jBJ/(jBJ + 2), r“ = j.Y~’/(jX~’ + 2),

from which the voltages at any point z are

VO”(z) = Vl)cinc(0) (e–}K@ + r’~ei’a’), 2 <0,

VOc’(z) = VO~inc(0) (1 + r~) e–~’o’, 2>0,

with a s Landing for prime or double prime. The far field

can therefore be written at once as

Et (<c, y, z) = [VO’(z)eO’(x) + VO” (z)eO’’(x) ]e–~~~vo
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V. RELATIONSHIP BETWEEN MODAL REPRESENTATIONS

IN RECTANGULAR COORDINATES

1. General

In rectangular waveguide regions, which possess more

than one axial direction, the eigenvalue problem for the

modes is highly degenerate. In such cases a variety of

modal representations is possible for the same trans-

mission line direction (z). These sets are not in general

independent. In particular, any mode function (corre-

sponding to wave numbers kU; and k=,) of one set can be

expressed as a linear combination of two mode functions

(corresponding to the same wave numbers) of any one

of the other possible sets. In matrix notations

where one defines the vectors

(36)

and the transformation matrices

“+(5:;) “% N ’37)
The orthogonality and normalization of such sets of

modes, it is recalled, is given in (13) and (14). By ex-

ploiting the orthogonality properties of the two sets of

modes in conjunction with (35), the coefficients all;,

a12’ . . 0 bzzi are determined at once. For example,

w .2 ~

bll; =
Ss

h,’ zo X e,’*dxdy.

U1 xi

The relationship between the a and the b coetlicients

follows upon substitution of the appropriate term from

(35), as in

where

It follows readily that A j and B, satisfy the condition

A,*fl~ = 1. (38)

Upon defining the modal voltage and current vectors

IS The caret notation ~eme~ tO di~ting~ish one of the modal sets

from the other; prime denotes the E-type sub-set, double prime the
H-type sub-set.

one can write

Pi& i = ~~e~, ~i~i = ?ihi7 (39)

since the same transverse fields must be represented by

either set of modes. The tilde sign indicates transposed

vectors or matrices. From (39), (13), and (14), the fol-

lowing relations are then obtained:

vi = X,tii; I< = &f~. (40)

When there is a discontinuity structure in the wave-

guide region, in which a number of modes are propagat-

ing, the voltages and currents at appropriate terminal

planes for each mode set are related by appropriate inl-

pedance matrices Z and ~:

v = 21, P = 2f, (41)

. .
where V, V, 1 and 1 are the column matrices

v + (v,), P -+ (P,), I + (It), f + (7,),

Here the subscript i not only distinguishes the mode

voltage and current associated with kzi and kg, but also

serves as an index to distinguish two such quantities

associated with the same kxi and kvi, when these occur at

the input and output terminal planes of the structure.

From (40) these voltage and current matrices can be

related for the two mode sets as follows:

v = Ati, I = ~f, (42)

where A and B are diagonal matrices whose elements

,are the two by two matrices A ~ and B~:

A A (A,), B ~ (B,),

and where

A*B = 1.

From (41), (42), and (43) the relationship

(43)

between the

impedance matrices for the two sets of modes then is

~ = B*ZB or Z = ~~.4*. (44)

Eq. (44) can be represented schematically as shown in

Fig. 5, where the transformation which each pair (i) of

the mode voltages and currents is subjected to is ex-

plicitly exhibited.

The ability to obtain the network description of a dis-

continuity for one set of modes from that for the other

set is useful for certain cases involving more than one

discontinuity. For example, if there are two discontin ui-

ties in a waveguide region which are far enough apart so

that there is no higher mode interaction, the network

parameters for each discontinuity may be obtained by

using the most convenient set of modes for each. The

separate networks may then be combined in a over-all

representation in terms of one of the mode sets, via the

transformation relations of (44). Such a case is that

shown in Fig. 6, where a parallel plate guide contains a

slit iris at the plane T1 and a change in dielectric con-

stant at the plane T2. Since the E and H moc[es would
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2
Fig. 5—Schematic representation of the transformation ~= B*Z~.

Fig. 6—Parallel plate waveguide containing a slit iris and a
change in dielectric constant.

be coupled by the iris but not by the dielectric interface,

and vice versa, for the E-type and IZ-type modes, it is

convenient to treat the discontinuity problem at plane

T1 in terms of the E-type and H-type modes, and that at

Tz in terms of E and H modes. Eq. (44) would be em-

ployed in combining these results.

VI. SUMMARY

In waveguide regions possessing at least one axial di-

rection the fields can be expanded in terms of E- and

H-type modes. In contrast to the usual H and E modes,

they are respectively characterized by vanishing mag-

netic and electric field components in an axial direction

(taken as they direction) transverse to the direction of

propagation. They form a complete orthonormal set.

The E- and H-type modes, having no periodicity in

y (when k~ = O), are, respectively, identical to the cor-

responding H and E modes.

The E- and H- type modes are usefully applied in cer-

tain scattering problems in which the obstacles possess

uniformity in y, and the modal direction of propagation

(or transmission line direction) lies in the plane trans-

verse to y. Under such circumstances the scattering

problem is a scalar one in that E- and H-type modes do

not couple; under the same set of conditions the familiar

E and H modes are coupled, the problem appears to

have a vector character, and the usual difficulties as-

sociated with vector problems occur.

Assuming that either the field or the network solution

of a problem involving incidence normal to the y direc-

tion (kU = O) is known, the solution is readily extended to

the case with arbitrary angles of incidence (kg # O) by

replacing k by ~k2 — ku2 in the scalar fields EU and Hu of

the E- and H-type modes or in the scattering, impedance

or admittance parameters of the associated network.

This permits the extension to arbitrary angles of inci-

dence of the many known E and H mode solutions of

such problems as the half plane, the capacitive slit in

parallel plate waveguide, and gratings of various cross

sections.

Rectangular waveguide regions (including free space,

of course) possess more than one axial direction. In

consequence, a variety of modal representations is possi-

ble for the same transmission line direction. The rela-

tionship between two such representations is given by a

transformation matrix which, in turn, can be described

in simple network terms. One can consequently combine

the networks representing tandem discontinuities even

if the emergent transmission lines of each network are

defined with respect to different modal representations.

This is done by interposing the appropriate transforma-

tion matrix or network.

APPENDIX: E- AND H-TYPE MOIIES FOR FREE

SP.4CE (RECTANGULAR COORDINATES)

A variety of E- and H-type modal representations is

possible for free space. In particular, a representation in

terms of either the rectangular or the radial modes can

be employed. The modes given below are based on rec-

tangular coordinates.

E-type Modes hui’ = O H-type Modes evi” = O

~=
e–i(kzi’x+kyt’y)

eu i – hzi’ =
2T

, hg{, = eZi, = e-,,~;’’~+~y,tu),
23r

These modes, when slightly modified, are also ap-

propriate to the consideration of discontinuity struc-

tures in free space which possess periodicities along both

x and y. The modified modes are then orthogonal in the

cell — a/2 <x< a/2 and — b/2 <y< b/2. The modifica-

tion consists of replacing the normalization factor 2T by

d% and recognizing that the wave numbers kz{, kz;’,

ku~ and ku{’ take on the discrete values

where k.o and ktio are the x and y components of the
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propagation wave

are the periods of

In the case of a

odic (with period

number of the exciting field, a and b

the structure in x and y,

structure in free space which is peri-

a) in x and arbitrary in y, the free

space modes are modified by replacing the normalization

factor 27r by 42~a and recognizing that the wave num-

bers k.! and kxi” take on the discrete values

while the wave numbers ku~f and ku~” are given by

These modes are orthogonal in the strip --a/2 <x <a/2

and —m<y< co. In the special case of a structure

periodic in x but uniform in y, such as an infinite strip

grating, the normalization factor is taken as ~~, and

q = O. The exponential y dependence is suppressed.
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Reflectors for a Microwave FabryPerot interferometer”

W. CULSHAW~

Summary—The advantages of microwave interferometers for
wavelength and other measurements at millimeter wavelengths are
indicated, and a microwave Fabry-Perot interferometer discussed in

detail. Analogous to the cavity resonator, this requires reflectors of

high reflectivity, small absorption, and adequate size. Stacked di-

electric plates, and stacked planar or rod gratings are shown to be

suitable forms of reflectors, and equations for the reflectivity, opti-

mum spacing, and bandwidth of such structures are derived. A series

of stacked metal plates with regularly spaced holes represents a good
design of reflector for very small wavelengths. Fringes and wave-

length measurements at 8-mm wavelength are given for one design
of interferometer, these being accurate to 1 in 101 without any dif-
fraction correction. For larger apertures and reflectors in terms of

the wavelength, errors due to diffraction will decrease.

I. INTRODUCTION

I

N conjunction with the efforts directed toward the

generation and use of shorter wavelengths in the

millimeter region, it is necessary to develop new

techniques of transmission and measurement. The fa-

cility with which methods based on optical techniques

can be used for this purpose improves as the wavelength

decreases, in contrast to the conventional waveguide

methods, where the dimensions of cavity resonators and

other components are in general comparable with the

wavelength, with a consequent increase in attenuation

and fabrication difficulties. Wavelength measurements

can be made with interferometers based on optical prin-

ciples, and at wavelengths around a few millimeters,

such methods would be preferable to the use of a cavity

resonator.

* Manuscript received by the PGMTT, July 10, 1958; revised
manuscript received, November 10, 1958.

~ National Bureau of Standards, Boulder Laboratories, Boulder,
Colo.

HORN

Qf

RAOIATOR

MICROWAVE
OSCILLATOR

LENS 1

RAOIATION
PATTERN

.14-

VARIAOLE
AIR SPACE

/

#

/

‘ POLYSTYRENE

LIMICROWAVE
RECEIVER

——

MOVABLE
REFLECTOR 1

Fig. l—Microwave form of Michelson interferometer.

A free-space form of Michelson interferometer is

shown in Fig. 1; here the beam from the radiating horn is

divided by the beam divider into two beams which

travel different paths. The two beams then are recom-

bined in the receiving horn, and interference is observed

between the two sinusoidal wave trains as one of the re-

flectors is moved. This interferometer has been operated

at A = 1.25 cm, 1 the wavelength measurements with a

particular form being accurate to a few parts in 104

without any correction for diffraction. The free-space

beam divider and reference arm can be replaced by a

hybrid tee at these wavelengths, and then only a single

radiator and reflector are required for the open arm.

I W. Culshaw, “The Michelson interferometer at millimeter wave-
lengths, ” PYOC. Phys. Sot. B, vol. 63, pp. 939–954; November, 1950.


