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spherical obstacles'® and infinitely thin symmetrical
obstacles® all approach twice the value obtained by geo-
metrical optics. It is found, however, that the back-
scattering cross sections of circular cylinders® are /2
times the geometrical area, those of spheres!! unity times
the geometrical area, and those of thin circular disks
square of the geometrical area,

CONCLUSION

It is concluded from this preliminary investigation
that the time-separation or microwave-pulse method of

1A, Aden, “Electromagnetic Scattering from Metal and Water
Spheres,” Ph.D. Dissertation, Harvard Univ.; 1950.
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back-scattering measurements can yield accurate re-
sults for three-dimensional obstacles of very small scat-
tering cross section and arbitrary shape provided that a
judicial choice and design of each component part of the
system is made. Thus it supplements the frequency
separation method used by Tang?® for two-dimensional
obstacles.
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On Network Representations of Certain
Obstacles in Waveguide Regions®

H. M. ALTSCHULER{ axp L. O. GOLDSTONET

Summary—Network representations for a class of obstacles in
waveguide regions when the diffraction problem is of a vector type
can be obtained by the use of E- and H-type modes. The special
properties of these modes are discussed and highlighted by an exam-
ple involving the network representation of a periodic strip grating in
free space for oblique incidence. Transformations relating the dif-
ferent networks based on various modal representations in rec-
tangular coordinate systems are also discussed.

I. INTRODUCTION

HE problems of the diffraction of electromagnetic

waves by obstacles in waveguide or free space are,

in general, vector problems. However, in the case
of “two-dimensional” obstacles such as the perfectly
conducting half plane, infinite periodic gratings, or the
infinite circular cylinder in free space, the vector diffrac-
tion problem may be decomposed into two independent
scalar problems. The same is true in the case of certain
structurally similar obstacles in rectangular and parallel
plate waveguide. Such decompositions have been em-
ployed, for example, by Heins! in treating the diffrac-
tion of a dipole by a perfectly conducting half plane,
and by Levy and Keller? in their discussion of diffrac-

* Manuscript received by the PGMTT, July 7, 1958; revised
manuscript received, November 4, 1958, The research reported was
conducted under Contract AF-19(604)2031, sponsored by the A.F.
Cambridge Res. Center, Air Res. and Dev. Command.

t Microwave Res. Inst., Polytech. Inst. of Brooklyn, Brooklyn,

N. Y.

1 A, E. Heins, “The excitation of a perfectly conducting half-
plane by a dipole field,” IRE TRANS. ON ANTENNAS AND PROPAGA-
TION, vol. AP-4, pp. 294-296; July, 1956,

2 B. R. Levy and J. S. Keller, “Diffraction by a Smooth Object,”
Inst. Math. Sci., New York Univ., N. Y., Res. Rep. EM-109; Decem-
ber, 1957.

tion by finitely conducting cylinders at oblique inci-
dence.

In this paper it is shown that modal techniques lead-
ing directly to network representations may be em-
ployed systematically in the solution of such problems.
When the attempt is made to base this approach on the
familiar £ and H modes propagating perpendicular to
the symmetry axis, the desired separation into scalar
problems is not possible. On the other hand, the separa-
tion into the simpler scalar problems can be effected by
appealing to an expansion of the fields in terms of an ap-
propriate alternative set of orthonormal modes. These
modes also make it possible to obtain the network repre-
sentations of problems involving arbitrary angles of in-
cidence directly from the results of the corresponding,
strictly two dimensional (incident vector perpendicular
to obstacle axis) problems. The matrix relations derived
here, which relate the networks based on these modes
to networks based on standard E and H modes, further
increase the area of applicability of the network solu-
tions.

The modes employed here, which form a complete
orthonormal set of vector modes, are designated as the
E- and H-type modes. They differ from the familiar
H and E modes in that they are characterized by the
vanishing of a transverse, rather than a longitudinal,
field component. To effect the separation into two
scalar problems, the modes are chosen such that one
sub-set (E-type) has no component of the magnetic field
parallel to the axial direction of the “two-dimensional”
obstacle, while the second sub-set (H-type) has no com-
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ponent of electric field in this direction. In the strictly
two-dimensional case, the E- and H-type modes are
identical with the H and E modes, respectively.

While the emphasis in this paper is primarily directed
towards the application of E- and H-type modes to a
technique whereby the network representations for a
class of obstacles under general incidence conditions can
be obtained, it is necessary to consider the modes them-
selves in some detail. Modes classified on the basis of
vanishing transverse field components have been dis-
cussed and employed previously by a number of au-
thors.3—?

In Section II the eigenvalue problem for E- and
H-type modes in both rectangular and circular cylindri-
cal coordinates is discussed. The connection between
the strictly two-dimensional diffraction problem and the
general case involving arbitrary angle of incidence is
obtained in Section I11. Section IV contains an illustra-
tion in which the E- and H-type modes are employed to
obtain a network representation of a periodic, perfectly
conducting strip grating for arbitrary angle of incidence
and arbitrary polarization of the incident wave. The
linear transformation connecting the various modal
representations in rectangular and parallel plate wave-
guides is treated in Section V. Finally, the E- and
H-type mode functions in rectangular coordinates ap-
propriate to free space and to periodic structures in free
space are presented in an Appendix.

II. MopalL REPRESENTATIONS

The total electromagnetic fields in an open or closed
waveguide region which possesses an axial direction,®
here arbitrarily designated as the y direction, can always
be represented in terms of two uncoupled scalar func-
tions, each of which satisfies the wave equation!' when
the region is bounded, if at all, by perfect electric or
magnetic walls. These scalar functions are essentially
the ¥y components of the electric and magnetic fields, £,

3 N. Marcuvitz, “Waveguide Handbook,” Rad. Lab. Ser., vol. 10,
MecGraw-Hill Book Co., Inc., New York, N. Y., pp. 89-96; 1951,

4 J. Van Bladel, “Field expandibility in normal modes for a multi-
lavered rectangular or circular waveguide,” J. Franklin Iust., vol.
253, pp. 313-321; April, 1952,

5 C. M. Angulo, “Discontinuities in rectangular waveguide par-
tially filled with dielectric.” IRE TraNs. oN MICROWAVE THEORY
AND TECHNIQUES, vol. MTT-5, pp. 68-74; January, 1957,

6 A. D. Bresler and N. Marcuvitz, “Operator Methods in Electro-
magnetic Field Theory, chap. 2, Guided Modes in Uniform Cylindri-
cal Waveguide Regions,” Microwave Res. Inst., Polytech. Inst. of
Brooklyn, N. Y., Rep. No. R-565-57; March, 1957.

7 R. E. Collin and R. M. Vaillancourt, “Application of Raleigh-
Ritz method to dielectric steps in waveguides,” IRE TRANS. ON
MicrowavE THEORY AND TECHNIQUES, vol. MTT-5, pp. 177-184;
July, 1957.

8 L. O. Goldstone and A. A. Oliner, “Leaky Wave Antennas, [:
Rectangular Waveguides, I1: Circular Waveguides,” Microwave Res.
Inst., Polytech. Inst. of Brooklyn, N. VY., Reps. No. R-606-57 and
R-629-57; August, 1957, and January, 1958.

¢ W. L. Weeks, “Phase Velocities in Rectangular Waveguide Par-
tially Filled with Dielectric,” Antenna Lab., Univ. of Illinois, Urbana,
IlL., Tech. Rep. No. 28; December, 1957.

0 Axial direction is defined as a direction such that all cross
sections transverse to it are identical in size and shape.

1 J, A, Stratton, “Electromagnetic Theory,” McGraw-Hill Book
Co., Inc., New York, N. Y., pp. 350-351; 1941.
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and H,. It is, therefore, suggestive to classify modes on
a similar basis (z.e., a sub-set for which E,=0, and one
for which H,=0) so that uncoupling of the two modal
sub-sets will always result. It must be noted, however,
that the above classifications are not sufficient to com-
pletely define the mode sets but that a “transmission
line direction,” i.e., the direction in which the modes are
taken to propagate, must also be chosen. It must be
noted that the transmission line direction does not
necessarily coincide with the axial direction defined
above. If the transmission line direction is chosen to
coincide with v, then the familiar E and H modes re-
sult.’? If one of the other coordinates is chosen as the
transmission line direction, then the resulting modes are
E-type (H,=0) and H-type (E,=0) modes. These
modes constitute a complete set of vector modes pos-
sessing orthogonality properties on surfaces transverse
to the transmission line direction.

In the following section, the eigenvalue problems for
E- and H-type modes are formulated for waveguide
cross sections for which rectangular or polar coordinates
are appropriate. The general solutions of these eigen-
value problems are then obtained. Certain explicit mode
functions in free space are listed in the Appendix. Mode
functions appropriate to parallel plate waveguide, to the
conducting wedge, and to periodic structures in free
space rotated with respect to the x, ¥ coordinates are
available elsewhere.!

1. The Eagenvalue Problem in Rectangular Coordinates

Waveguide regions where rectangular coordinates are
appropriate are highly degenerate in that three axial
directions exist. Here the 2z direction is arbitrarily
chosen as the transmission line direction. The time de-
pendence is taken as exp jwt.

The vectors transverse (to z) field equations for any
uniform waveguide, in the absence of sources, are:!?

[V} . V.V,

— E; = — Jwu 1t+_—>'HtXZO,

Jz k?

a . ViV,

— H, = — Jwe 1+ r,>'Z()><Et (1)
03 k®

where, for rectangular coordinates,

1; is the transverse unit dyadic x¢xe+y oy,
V. is the transverse gradient operator x¢0/dx
+y08/6yy

Xg, ¥o and z, are unit vectors,
and % is the free space wave number 27/A.

The desired modal representation of the transverse fields
is

2 N. Marcuvitz, op. cit., Sec. 1.2.

13 H, M. Altschuler and L. O. Goldstone, “A Class of Alternative
Modal Representations for Uniform Waveguide Regions,” Micro-
wave Res. Inst., Polytech. Inst, of Brooklyn; Rep. No. R-557-57
February, 1957,
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Et(xa Ys Z) = Z Vi(z)el(xx 3’),

Hi(v,y,2) = 2. L(a)hi(x, y). )

Upon substitution of (2) into (1), the transmission line
equations and the vector eigenvalue problem for the
transverse mode functions [(3) and (4) below] follow
readily with the products, x;Z, and «;Y;, playing the
role of separation constants. V;(2) and [I;(z) are hence
identified as the modal voltages and currents:

dv; . dl;
= - ]K;'Z,Ii, =
dz dz

— YV, 3)

where k, is the modal wave number for propagation
along 2, and Z,=1/Y; is the modal characteristic im-
pedance. The actual value of Z; must be chosen ap-
propriately in connection with each particular case. The
vector eigenvalue problem for the transverse mode func-
tions is

V.V,
K,;Ziei = WU 1,5 'J(‘ 5 )hz X Zy,
Vth
KiY.,'I’L, = e 1; + k2 A X €e;. (4)

Eq. (4) may be combined to yield the second order
problems for e; and h;,

(Ve + ki2)e; = 0, (V2 + ks = 0, (5)

where
ke = B — k= kst + Ryl

In rectangular coordinates, the preceding equations do
not uniquely specify a modal set since the eigenvalue
problem posed by (4) is degenerate, in the sense that
corresponding to each pair of transverse wave numbers
k.., k. there are two independent mode functions. These
two mode functions may be chosen to be orthogonal to
each other in a variety of ways. Each such choice will
result in a particular mode set. Two of these sets are of
interest here. One is obtained if the familiar condition
e,=h;X z,is imposed. It is comprised of two sub-sets of
modes, both associated with the same eigenvalues,
namely, the usual E and H modes. These are character-
ized by vanishing field components in the transmission
line direction; in detail, the E modes by H,=0, and the
H modes by E.=0. If, on the other hand, the condition
¢,;=0 is imposed, a sub-set of H-type modes results
with transverse wave numbers k,; and k,.. The associated
modal sub-set (E-type modes) which corresponds to the
same transverse wave numbers results upon the imposi-
tion of the condition k,,=0. These two modal sub-sets
again constitute a complete orthogonal set; the trans-
mission line direction is along g, but the modes are now
characterized by vanishing field components along y.
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Solutions for the components of the E- and H-type
mode functions can be obtained from (5); in particular,
it is convenient to fix upon the ¥ components:

o* 9 ;
59;2— + dy? + kn/l> ey =0, ki/? = k* — k2 (6a)

for the E-type modes, where &,/ =0, and

9* a?
<5.x; + ay2 + ktz,/2> hl/i” = 07 ktz//2 = k2 - Kz//2 (6b)

for the H-type modes, where ¢,/ =0. In order to insure
the proper relationship between the components of
these transverse vector mode functions, one rewrites the
components of (4) in the following forms:

For the E-type modes (h,,=0),

Kk, we 1 %,
he = — Zz/< > _—;> eyz/a e = R 7 : . (7)
B — ky, B2 — ky,* 9xdy
Z, may be defined as
kY — k.
ZL, = *—7—1/—: (8)
K, we
so that
hei = — e, )]

For the H-type modes (e,;/” =0),
e:ci” = Yi”( Kz”w” )hm” h:u” = 1 — 92}}1”” (10)
kB — Ryl ’ k2 — k2 0xdy

V. may be defined as

R = Ry
vy = o ’ (11)
so that
ezi” = hw;". (12)

It can be seen from (7) and (10) that these mode func-
tions do not exist when k*=Fg, 2. In such cases an al-
ternative modal description must be employed.

As can be demonstrated, the E-type and H-type mode
functions possess the following orthogonality prop-
erties:

y2 a2
f f h# X zg-ef*dxdy = 0, a 5% S and/or i < 5, (13)
Y1 Ty

where wxy, %2, ¥1, and ¥, are the appropriate limits of in-
tegration, and where both a and 8 can stand for the
prime or the double prime indices; the asterisk stands
for complex conjugate. The definition of Z. in (8) and
Y/ in (11) assures that the mode functions are nor-
malized so that

yz z2
f f hl“ X Zo-e,ﬂ*dxdy = 5;{,5049 (14)
() L)
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for bounded! regions. It is stressed again that for
these modes e~ h,*X z, in contrast to the usual E
and H mode case where e*=h,2Xz. In view of this,
there is an additional arbitrariness here which has been
exploited by defining characteristic impedances as in
(8) and (11). The following two scalar orthogonality
conditions may be written as a consequence of (14),

(9), and (12):
y2 €2
f f ey, ey *dxdy = 8y,
Y1 z1

ye2 2
f f by by Fdxdy = 8,
Y1 £

It is, therefore, apparent that the above choices of char-
acteristic impedance [see (8) and (11)] correspond to a
normalization demand on the scalar components of the
mode functions e, and h,,”" as well.

For the case h,=0, i.e., when there is no field varia-
tion in the v direction, (7)—(12) take on much simpler
form. The equations in this form are recognized to be
appropriate to the familiar I and E modes; the scalar
field components involved satisfy the relation e,*=h,*
X zo. Eq. (13) now reduces to the usual normalization
statement for H and E modes:

(15)

z3
f e,-""e,ﬂ*dx = 0;;0a8. (16)

z1
It is seen, then, that when the fields have no variation
in the vy direction, the E- and H-type mode functions are
identically the familiar H and E mode functions (in z},
respectively.

The explicit form of the E- and H-type mode func-
tions, of course, depends on the boundary conditions.
The actual mode functions for some special cases are
presented in the Appendix.

2. The Eigenvalue Problem for Radial Transmission Line
Modes

The circular cylinder coordinate system appropriate
to the following discussion is shown in Fig. 1. The time
dependence is again taken as exp jwt; the radial direc-
tion is the transmission line direction. The description
employed here is called a radial transmission line de-
scription® which, it will be shown, is based on a set of
E- and H-type modes possessing vector orthogonality
properties.

The transverse (to 7) field equations in this case are
those given in the “Waveguide Handbook.”® The de-
sired modal representation of the transverse fields is

EU = Z V’i(r)eyi(y; cb)) Hy = Z I»(”)hw(% (I)>7

tEg = 2, Vi(Deai(y, ®), rHe = E I(Nheiy, ®), (A7)

* This and all subsequent orthogonality or normalization state-
ments hold for unbounded regions if §,; is replaced by 8(i—7).
1 N. Marcuvitz, op. cit., sec. 1.7,
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TRANSMISSION
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/Vy

Fig. 1—Circular cylindrical coordinates.

where, upon substituting (17) into the field equations
and applying a separation of variables argument, the
modal voltages and currents can be shown to satisfy the
radial transmission line equations:

2

dr

dr;
= — ji,(r)Z(nl,, ~d-7— = — () Vilr)Vi (18)

From the field equations, the following two scalar
eigenvalue problems are obtained:

62 82
(g)’}z— + prY + B =kt Pi'2> eyi = 0
for E-type modes: ky’ = 0, (19)
62 82 2 119 119 1
ayz—l——éa—kk“—kyi“—kpl.‘ hyi :0
for H-type modes: ¢,/ = 0. (20)

Here %,./, p./, k,,’, and p,”" are separation constants. The
remaining components of the mode functions are ob-
tained from the field equations and (17) and (18):

he = mk/@ Yi(r)e, (21a)
v for E-type modes;
1 &%y
’ v
6pi = - — (21b)
(B2 — ky/%) 0%ay
"o . w'ufr " " 124
e, =R k(N2 () hy, (22a)
" N for H-type modes.
., 1 0%hy,
hg,! = ————— (22b)
(k% — ky"?) 0®ay ]

In exact analogy with the preceding rectangular case,
the following choices are now made:

k* — k,'? k2 — k2

Zi(r) = Lk\u) ; Y/ = (———L—Z - (23)
roe; (7) rouk,’”’ (r)

Egs. (21a) and (22a) then reduce to
}lq)il B ey,-’; 6@{” == ]lui”- (24)

As before the choices embodied in (23) are equivalent to
the following normalization demand:
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y2 pdy

f f eyl ey, *d®dy = b,;
n [ 3]
X

f f Ry by *d®dy = 8.
Y1 i 28

In terms of the scalar functions, with z4, ®,, and y, taken
as unit vectors, one defines the vector mode functions
as

(25)

e; = ‘I)oeq)i + Yoy and h; = (I)ollqn' + J’Ohyz‘- (26)

Now (23) is equivalent to the following normalization
demand on the vector mode functions:

yz B2
f f h,* X ro-ef*dddy = §,,043.
Y1 Py

Eq. (23) expresses Z/ and ¥,” in terms of «/ and &,
which, it can be shown, are given by

()] = (B — Ay2) — ?— :

27)

(28)

These modes exist only when k*#Fk,;%. The explicit form
of the mode functions in specific cases, of course, de-
pends on boundary conditions.

I11. APPLICATION TO Two-DIMENSIONAL SCATTERING
PROBLEMS—ARBITRARY ANGLES OF INCIDENCE

As has already been pointed out, the total fields in
homogeneous waveguide regions uniform in the v direc-
tion can be expressed in terms of the scalar field compo-
nents, E, and H,. These components satisfy the scalar
wave equation

Ve + (& — kA]r'= 0, (29)

where the operator V2 is taken as V2—(9%/dy? and the
operator 0%2/0y% as —k,2 It is apparent that the func-
tional form of the solutions of (30) is independent of the
value of %k, and that solutions for k,>0 are readily in-
ferred from those for k,=0. If the solutions for %2,=0
are E,=E, (k) and H,=H,(k), then those for k,#0 are
obtained by replacing k by +/k*—k,? wherever it occurs.
This property can be usefully applied, when the field
solution of a two-dimensional problem (%, =0) is known,
to obtain a solution for the corresponding problem with
k,#0.

It will now be shown that the (E- and H-type) net-
work parameters appropriate to certain two dimensional
problems can be similarly modified to yield the network
parameters for the case b, 0. This procedure is applica-
ble when the E- and H-type modes are uncoupled both
for k,=0 and k,==0.

Since the y components of the E-type mode functions,
e,., are independent of both £ and k,, the dependence of
E, on +/E*—k,? is associated only with the mode volt-
ages, i.e.,

E,(VE = &)

VW= R)e  (30)
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The elements of the normalized scattering matrix for a
discontinuity which is uniform in ¥, but otherwise ar-
bitrary, are defined as:

V’refz' ..
=8, (Li=1,23---N),  (31)
V incj
where
V/(VE ~ &Y
= V,mc i(\/k2 _?ﬁ) + V/refi('\/kT?E?)- (32)

From (31) and (32) it may be concluded that
SL] = Su(\/pt_k?)

In view of the dependence of the scattering coefficients
on vk>— k2 it is seen that the scattering matrix for the
case k,7#0 can be obtained from that for the case &, =0
by replacing k by v/E*—k 2

When the corresponding impedance matrix Z is nor-
malized, it can be expressed in terms of thescattering
matrix. The normalization of the impedance matrix can
be accomplished in a variety of ways. The relationship
between the scattering matrix and the normalized im-
pedance matrix Z’ is

\/

7=V + 851 — Zif—nS)—l‘/Z:E (33)

where the impedance matrix has been normalized in the
following manner:
= JS s S
7 =NV 7= (o (34)
. — —
Each element of the diagonal matrices ¥, and Yy is the

admittance seen by a mode traveling on an infinite

transmission line.”d The arrows indicate the two direc-

tions of travel. Upon examination of (33) one finds that

Z', like .S, depends only on +/k*—k2,. This follows from

the fact that the dependence on % (other than that on
—

SO «—
E2—F2) of the admittance matrices ¥y and Y, is the

same, and that this dependence can be factored out as a
constant multiplier F(k):

= s

Vo= FlE)vo(\/ B2 — k2.
Therefore, for the normalized impedance matrix Z’, as
for the scattering matrix .S, the results for k,50 can be
obtained " from those for k,=0 by replacing k2 by
VE:—Fk2 Although Z’ is normalized in a symmetric
manner here (Z,;/ =Z;), the conclusion has been shown
to hold for any type of normalization. A similar pro-
cedure results in the same conclusions for the scattering
and normalized impedance matrices associated with
H-type modes.

It is important to recall at this point that the earlier

conclusion that E- and H-type modes with k,=0 are re-
spectively identical to the conventional H and E modes.

16 For radial and other nonuniform transmission lines ¥y and I
are not the characteristic admittances of the transmission lines. An
infinite radial line extends from r=0 to 7= «. In the case of uniform

transmission lines, ¥Yo= ¥,=characteristic admittance.
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One can consequently take advantage of the known
equivalent circuits associated with two dimensional
(ky,=0) E or H mode problems in order to find the net-
works associated with E- and H-type modes when
k, 0. A specific illustration is embodied in the following
section.

IV. ILLUSTRATION OF APPLICATION OF FE- AND
H-TyrPE MoDES: DIFFRACTION BY
AN INFINITE STRIP GRATING

The properties of the E- and H-type modes make
them particularly convenient for application to a cer-
tain class of diffraction problems associated with uni-
form homogeneous open and closed waveguide regions
which may be of unconventional cross section. In more
detail, their virtue lies in the fact that these problems
involve uncoupled E- and Ii-type modal sets which can
immediately be solved as scalar problems. The solu-
tions of such diffraction problems can be phrased in
either field or network terms. They may be exploited to
obtain the improper modes of open structures (for
given k,), or the propagation wave numbers k,, for leaky
and closed waveguides, via a transverse resonance pro-
cedure.

Let a plane wave

E = Ae 'k.r, A4 = xpa, + yoay + zoa.

be incident at an arbitrary angle upon the doubly in-
finite strip grating shown in Fig. 2 which is uniform in
the y direction. When z is taken as the transmission line
direction, the transverse electric field with suppressed v
dependence is expressed by the superposition of the two
lowest (m=0) E-type and H-type mode functions (see
Appendix) appropriate to such a periodic structure:

Vi'ine(2)ed (2) + Vi ino(2)eo”’ (),

where it can be shown that, in terms of the incident
wave amplitudes,

VOIinc(z) = \/Z aye-—jxoz’

Al (kport+xa2) =

14 s (Z) — \/;1—<a + a M) g ihe?

0 ine z i’} k?‘ _ ky2 .
One can therefore regard the problem as two uncoupled
scalar problems. For k,=0, these are identically the
scalar H mode and E mode problems for which network
solutions are known!’ for the E-type mode (i.e., the
scalar field ¢,) and the H-type mode (i.e., the scalar field
h,) incident, the equivalent circuits are shown in Figs.
3(a) and 3(b), respectively. The representations are at
the plane T (taken as 2=0) in which the strips are lo-
cated. These solutions are subject to the restriction
a(l—k.o/E) /A <1, so that only the lowest E-type mode
and H-type mode propagate. The propagation wave
number of the associated transmission lines is kp; im-
pedances have been normalized to the respective char-

17 Marcuvitz, op. cif., secs. 5.18 and 5.19.
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Fig. 2—Doubly infinite strip grating and associated coordinates.
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Fig. 3—Equivalent circuits appropriate to the two uncoupled
scalar problems when there is no variation in y.

o
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Fig. 4—Equivalent circuit appropriate to the strip grating

when there is variation in v.

p

acteristic impedances. Explicit expressions for the pa-
rameters B,/ (k) and X;'(k) are available!” in the form

Vo' = xo/wn,

V' = we/ko,

B/(k) = B.(a,d,\, cos8)/Y;
X/ (k) = Xi(a,d, N, cos0)/ V"

where cos 8 =ko/k, and, of course, A =27/k. The corre-
sponding parameters with k,70 are B/(\/k>—k,2) and
X1 (vVE—~E2. The network solutions with the original
plane wave incident then is given by the uncoupled net-
work of Fig. 4, together with the specified incident volt-
ages Vi'me(2) and 1y"ine(2) at 2=0. The voltage reflec-

tion coefficients (with the 4/k2—k,? dependence under-
stood) at T_ are

— JBJ//(jBS + 2),
from which the voltages at any point z are
V() = V%ine(0)(e7ine - Tegin),
Vet(z) = Vi®ine(0)(1 + T 77,

with « standing {or prime or double prime. The far field
can therefore be written at once as

Ex, y,2) = [V (@ed(x) + Vi (e (x)]e.

I = I =X/ GXL + D),

g < 0,
z >0,
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V. RevraTIiONsHIP BETWEEN MODAL REPRESENTATIONS
IN RECTANGULAR COORDINATES

1. General

In rectangular waveguide regions, which possess more
than one axial direction, the eigenvalue problem for the
modes is highly degenerate. In such cases a variety of
modal representations is possible for the same trans-
mission line direction (z). These sets are not in general
independent. In particular, any mode function (corre-
sponding to wave numbers k,; and &,,) of one set can be
expressed as a linear combination of two mode functions
(corresponding to the same wave numbers) of any one
of the other possible sets. In matrix notation!®

éi = Aiei, fl,, = Bihi, (35)
where one defines the vectors
&,/ - h
) ()
éi’l hz//
e~' I’li,
() ()
e":ll hi’l
and the transformation matrices
Ao ((111’: 0121) B <b11i b12’.>. @7
as1®  a22° bar®  bast

The orthogonality and normalization of such sets of
modes, it is recalled, is given in (13) and (14). By ex-
ploiting the orthogonality properties of the two sets of
modes in conjunction with (33), the coefficients ay?,
@1st -+ - by’ are determined at once. For example,

Y2 kT
b’ = f f h/ z¢ X e/ *dxdy.
Y1 Zy

The relationship between the a¢ and the b coeflicients
follows upon substitution of the appropriate term from
(35), as in

Y2 La
2 -~ 7 -~
bit® =f f hLI'Zo X (Oénez + alzez/')*dxdy = Oln*,
Y1 zy

230

D(22> '

It follows readily that 4; and B, satisfy the condition
AXB; = 1. (38)

where
11
A7l — (

(243}

Upon defining the modal voltage and current vectors
v/ L (VY
=) v ()
V/Lf/ Vi,,
1. . j‘ir
1= () 1)

18 The caret notation serves to distinguish one of the modal sets
from the other; prime denotes the E-type sub-set, double prime the
H-type sub-set.

Altschuler and Goldstone: Network Representations of Obstacles in Waveguides

219

one can write

f}iéi = I7iei7 fz};t = fihi, (39)

since the same transverse fields must be represented by
either set of modes. The tilde sign indicates transposed
vectors or matrices. From (39), (13), and (14), the fol-
lowing relations are then obtained:

Vi = /Lf/\'“ I; = sz (40)

When there is a discontinuity structure in the wave-
guide region, in which a number of modes are propagat-
ing, the voltages and currents at appropriate terminal
planes for each mode set are related by appropriate im-
pedance matrices Z and Z:

V=2zI, V=2I (41)
where V, V, I and I are the column matrices
Vo), Vo), I-U), I-d).

Here the subscript ¢ not only distinguishes the mode
voltage and current associated with k,; and k,, but also
serves as an index to distinguish two such quantities
associated with the same k.; and k,;, when these occurat
the input and output terminal planes of the structure.
From (40) these voltage and current matrices can be
related for the two mode sets as follows:

vV =A4V, I=BI, (42)
where A and B are diagonal matrices whose elements
are the two by two matrices 4; and B;:

A — (4., B — (B,),

and where

A*B = 1. (43)
From (41), (42), and (43) the relationship between the
impedance matrices for the two sets of modes then is

7 =PB*ZB or 7 = AZA*. (44)
Eq. (44) can be represented schematically as shown in
Fig. 5, where the transformation which each pair (i) of
the mode voltages and currents is subjected to is ex-
plicitly exhibited.

The ability to obtain the network description of a dis-
continuity for one set of modes from that for the other
set is useful for certain cases involving more than one
discontinuity. For example, if there are two discontinui-
ties in a waveguide region which are far enough apart so
that there is no higher mode interaction, the network
parameters for each discontinuity may be obtained by
using the most convenient set of modes for each. The
separate networks may then be combined in a over-all
representation in terms of one of the mode sets, via the
transformation relations of (44). Such a case is that
shown in Fig. 6, where a parallel plate guide contains a
slit iris at the plane T} and a change in dielectric con-
stant at the plane T Since the E and H modes would
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Fig. 5—Schematic representation of the transformation Z=B*ZB.

I
|
Tl T2

Fig. 6—Parallel plate waveguide containing a slit iris and a
change in dielectric constant.

be coupled by the iris but not by the dielectric interface,
and vice versa, for the E-type and H-type modes, it is
convenient to treat the discontinuity problem at plane
Tyin terms of the E-type and H-type modes, and that at
T3 in terms of E and H modes. Eq. (44) would be em-
ployed in combining these results.

VI. SUMMARY

In waveguide regions possessing at least one axial di-
rection the fields can be expanded in terms of E- and
H-type modes. In contrast to the usual H and E modes,
they are respectively characterized by vanishing mag-
netic and electric field components in an axial direction
(taken as the y direction) transverse to the direction of
propagation. They form a complete orthonormal set.
The E- and H-type modes, having no periodicity in
y (when k,=0), are, respectively, identical to the cor-
responding H and E modes.

The E- and H- type modes are usefully applied in cer-
tain scattering problems in which the obstacles possess
uniformity in ¥, and the modal direction of propagation
(or transmission line direction) lies in the plane trans-
verse to ¥. Under such circumstances the scattering
problem is a scalar one in that E- and H-type modes do
not couple; under the same set of conditions the familiar
E and H modes are coupled, the problem appears to
have a vector character, and the usual difficulties as-
sociated with vector problems occur.

Assuming that either the field or the network solution
of a problem involving incidence normal to the y direc-
tion (k,=0) is known, the solution is readily extended to
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the case with arbitrary angles of incidence (k,7#0) by
replacing k by v/E2—k,2 in the scalar fields E, and H, of
the E- and H-type modes or in the scattering, impedance
or admittance parameters of the associated network.
This permits the extension to arbitrary angles of inci-
dence of the many known E and H mode solutions of
such problems as the half plane, the capacitive slit in
parallel plate waveguide, and gratings of various cross
sections.

Rectangular waveguide regions (including free space,
of course) possess more than one axial direction. In
consequence, a variety of modal representations is possi-
ble for the same transmission line direction. The rela-
tionship between two such representations is given by a
transformation matrix which, in turn, can be described
in simple network terms. One can consequently combine
the networks representing tandem discontinuities even
if the emergent transmission lines of each network are
defined with respect to different modal representations.
This is done by interposing the appropriate transforma-
tion matrix or network.

ArPENDIX: E- AND H-TYPE MODES FOR FREE
SpacE (RECTANGULAR COORDINATES)

A variety of E- and H-type modal representations is
possible for free space. In particular, a representation in
terms of either the rectangular or the radial modes can
be employed. The modes given below are based on rec-
tangular coordinates.

E-type Modes hy;' = 0

g1 i’z thysy)

H-type Modes e," = 0

e"‘f (ki "atlys’ 'y)

r_ r_ 7 "o
eyi = — hyi = ) Ry = ey = —————,
27 27
’ ’ 7 144
’ —kyi'kas ' 1" by kai 7"
Cz; = €yi y byl = ———— yi g
2 ' )
k__km,2 k2"‘kyi2
! 144
, k% — k2 iy k' wn
Z{ = ; ’ Zi" = e
ki we k? — kyd'?
? /
k2= k% — ky,)? — kui'?, k2 = kB — k't — k)2,
- ® <kle<°°, — ®© <kxi/,<°°,

— o < k! < w0 — o < k' < o,

These modes, when slightly modified, are also ap-
propriate to the consideration of discontinuity struc-
tures in free space which possess periodicities along both
x and y. The modified modes are then orthogonal in the
cell —a/2<x<a/2 and —b/2<y<b/2. The modifica-
tion consists of replacing the normalization factor 2r by
v/ab and recognizing that the wave numbers k., k.,
k,/ and k,;’ take on the discrete values

2mw
k;ci,:kxi/,: +k20> m=0, —_tl’iz,"",
a
/o g = 2T -
kyz -kyz - b +ky0; n"‘oa i_.ly —I——Z:"'J

where kg and ko are the x and y components of the
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propagation wave number of the exciting field, ¢ and b
are the periods of the structure in x and ¥.

In the case of a structure in free space which is peri-
odic (with period @) in x and arbitrary in y, the free
space modes are modified by replacing the normalization
factor 2 by +/2ma and recognizing that the wave num-
bers k,;” and k,;/’ take on the discrete values

2mw
kxi, = kzi// ol + kxOg
a

m=07i17i2)"'7

while the wave numbers k,;” and k,;”” are given by
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— o < w0,

byl = k' =+ kyo,

These modes are orthogonal in the strip —a/2<x<a/2
and — oo <y< e, In the special case of a structure
periodic in x but uniform in y, such as an infinite strip
grating, the normalization factor is taken as /@, and
n=0. The exponential y dependence is suppressed.
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Reflectors for a Microwave Fabry—Perot Interferometer*
W. CULSHAW+

Summary—The advantages of microwave interferometers for
wavelength and other measurements at millimeter wavelengths are
indicated, and a microwave Fabry-Perot interferometer discussed in
detail. Analogous to the cavity resonator, this requires reflectors of
high reflectivity, small absorption, and adequate size. Stacked di-
electric plates, and stacked planar or rod gratings are shown to be
suitable forms of reflectors, and equations for the reflectivity, opti-
mum spacing, and bandwidth of such structures are derived. A series
of stacked metal plates with regularly spaced holes represents a good
design of reflector for very small wavelengths. Fringes and wave-
length measurements at 8-mm wavelength are given for one design
of interferometer, these being accurate to 1 in 10* without any dif-
fraction correction. For larger apertures and reflectors in terms of
the wavelength, errors due to diffraction will decrease.

I. INTRODUCTION

N conjunction with the efforts directed toward the

generation and use of shorter wavelengths in the

millimeter region, it is necessary to develop new
techniques of transmission and measurement. The fa-
cility with which methods based on optical techniques
can be used for this purpose improves as the wavelength
decreases, in contrast to the conventional waveguide
methods, where the dimensions of cavity resonators and
other components are in general comparable with the
wavelength, with a consequent increase in attenuation
and fabrication difficulties. Wavelength measurements
can be made with interierometers based on optical prin-
ciples, and at wavelengths around a few millimeters,
such methods would be preferable to the use of a cavity
resonator.

* Manuscript received by the PGMTT, July 10, 1958; revised
manuscript received, November 10, 1958.

IT National Bureau of Standards, Boulder Laboratories, Boulder,
Colo.
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Fig. 1—Microwave form of Michelson interferometer.

A free-space form of Michelson interferometer is
shown in Fig. 1;here the beam from the radiating horn is
divided by the beam divider into two beams which
travel different paths. The two beams then are recom-
bined in the receiving horn, and interference is observed
between the two sinusoidal wave trains as one of the re-
flectors is moved. This interferometer has been operated
at A=1.25 cm,! the wavelength measurements with a
particular form being accurate to a few parts in 10*
without any correction for diffraction. The free-space
beam divider and reference arm can be replaced by a
hybrid tee at these wavelengths, and then only a single
radiator and reflector are required for the open arm.

1 W. Culshaw, “The Michelson interferometer at millimeter wave-
lengths,” Proc. Phys. Soc. B, vol. 63, pp. 939-954; November, 1950.



